On the role of salinity on the water mass transformation in the central Irminger Sea between 2002 and 2011

J. Karstensen¹, X. Fan², M. Visbeck¹, T. Müller¹, U. Send², H. Valdimarson³

¹Leibniz-Institute for Marine Sciences (IFM-GEOMAR), Düsternbrooker Weg 20, 24105 Kiel, Germany ²Scripps Institution of Oceanography, UCSD, 9500 Gilman Drive, La Jolla CA, 92093, USA ³Hafrannsóknastofnunin (MRI-HAFRO), Skulagata 4 P.O. Box 1390, Reykjavik 121, Iceland

Leibniz-Institut für Meereswissenschaften an der Universität Kiel SCRIPPS IN STITUTION OF OCEANOGRAPHY

Changes in Salinity & Temperature in ICES area (2000 to 2009) – mostly upper layer

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	
1 (12)	-0.94	0.69	-1.40	0.42	0.51	1.78	1.69	2.01	-1.54		
2(1)	0.80	1.02	-1.54	1.85	1.15	1.62	1.10	0.90	-1.06	1.20	
3 (2b)	0.25	-0.24	0.27	0.17	0.92	0.71	0.24	0.46	1.04	1.17	
4(2)	0.38	-0.8	.08	0.50	0.88	0.92	0.85	0.92	1.35	0.31	
5 (2c)						5					
6 (2c)	-0.3	8	.25	-0.59	-1.96	-2.30	-1.08	-0.48	-0.13	-0.13	2
7 (2)	0.44	0.25	-0.22	0.74	0.17	0.34	0.44	-1.12	-0.67	-0.81	
8(2)	-0.97	0.12	-0.70	-1.15	-1.16	-1.73	-0.29	0.06	-0.50	-0.69	
9 (3)	0.56	0.61	-0.48	1.14	0.81	0.02	-0.09	-0.09	-0.04	0.82	
10 (3)	0.59	0.34	-0.12	0.29	0.35	0.18	0.70	0.69	0.75	0.55	
11 (3)	0.99	0.83	0.97	2.54	2.37	3.40	2.37	2.46	2.08	3.17	1
12 (4b)								-			
13 (5)	1.17	0.74		2.57	2.52	2.19	2.13	2.34	2.71	2.82	
14 (5b)	0.10	0.70	1.37	0.54	2.45	1.84	1.53	1.72	0.76	0.89	
15 (6)	0.70	0.54	0.57	2.16	2.37	1.92	1.41	1.62	2.53	2.20	
16 (6)	0.68	0.63	0.83	2.02	1.73	2.15	1.46	1.58	1.92	2.32	
17 (7)	0.09	0.09	1.27	1.59	1.64	1.34	0.93	1.14	1.41	1.46	
18 (7)	0.97	1.23	1.86	2.20	2.09	2.06	1.89	1.37	1.89	2.80	
19 (10)	0.77	0.55	0.89	1.73	1.71	1.24	1.26	1.11	0.22	1.89	
20 (10)	0.41	0.06	0.78	0.96	0.99	0.77	0.75	0.95	0.60	1.77	
21 (10)	0.18	0.20	0.18	1.17	1.20	1.60	1.57	0.63	0.20	1.60	
22 (11)	0.16	0.06	0.33	0.71	1.52	1.49	1.96	1.61	1.34	0.72	
23 (11)	0.12	-0.72	-0.22	0.95	1.95	0.95	0.95	1.45	0.28	0.62	
24 (12)	-0.33	0.12	0.16	-0.19	0.49	1.40	1.88	1.54	0.67	0.93	
25 (10)	0.06	-0.22	0.40	0.14	0.74	1.48	1.70	1.30	0.90	0.80	
26 (12)	0.38	1.89	1.51	1.51	1.89	3.40	4.15	2.23	1.17	2.30	
27 (4)	-0.53	-1.94	-0.49	-1.02	-0.77	-0.23	0.76	0.77	0.94	0.02	:
28 (89)	-1.56	-1.93	-0.40	1.14	1.50	0.79	-0.43	-0.74	0.33	-0.07	
29 (89)								2		·	
30 (89)	0.08	-1.65	-0.50	-0.39	0.52	0.18	0.72	-0.03	0.73	0.58	
31 (89)	0.04	-0.95	-0.27	0.60	0.44	0.27	1.01		0.94	1.20	
32 (9b)	-1.12	-1.98	-1.48	-1.79	-1.40	-0.98	-1.70	-0.94	-1.07	-0.81	

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	
1 (12)	-0.06	0.60	-1.52	0.32	1.22	0.04	0.04	3.50	-0.75]
2(1)	1.02	0.93	-0.80	2.27	1.26	0.99	0.56	0.76	-0.55	0.91	
3 (2b)	-0.23	0.0	0.06	1.86	0.49	0.96	0.88	0.50	1.19	-0.16	
4 (2)	0.94	1.03	0.56	0.97	2.41	1.62	2.68	0.01	0.62	0.29	
5 (2c)	1.59	20	0.54	-0.13	-0.56	-0.83					
6 (2c)	1.79	24	2.72	1.21	0.86	0.45	1.17	1.48	0.89	0.11	- 2
7 (2)	0.22	0.04	0.09	0.07	0.35	0.10	0.33		-0.73	-1.06	
8 (2)	3.55	-0.31	0.14	-1.77	-1.01	-0.02	0.88	-0.62	-0.31	0.38	
9 (3)	1.02	0.07	-1.19	2.11	0.94	0.44	0.05	0.61	-0.02	-0.02	
10 (3)	-0.44	-0.49	-1.04	1.54	0.39	-0.16	0.14	-0.44	0.38	0.27	
11 (3)	0.52	0.73	0.47	2.22	2.15	3.34	1.95	1.89	1.19	2.07	- 1
12 (4b)	1.38	0.50	1.38	1.82	2.69	2.48	2.26	3.13			
13 (5)	0.74	0.14		2.34	2.88	3.24	4.38	3.48	3.34	2.38	
14 (5b)	0.26	1.24	1.04	1.11	2.72	1.58	1.22	2.01	0.33	-0.07	
15 (6)	0.34	0.86	0.89	2.75	2.43	1.53	2.58	2.34	2.62	2.02	
16 (6)	0.49	0.45	0.74	2.37	1.96	1.50	1.59	1.92	1.71	2.00	0
17 (7)	0.73	0.40	3.47	4.33	2.80	2.80	3.60	4.40	3.40	2.20	l l
18 (7)	1.20	1.64	2.84	3.24	2.84	2.36	2.64	2.92	3.00	3.52	
19 (10)	2.88	0.80	1.94	2.27	2.20	0.85	2.14	1.90	0.49	2.57	
20 (10)	0.88	0.67	2.08	1.70	0.78	0.55	1.49	2.11	0.39	1.93	
21 (10)	0.54	1.02	0.46	1.49	1.35	1.46	2.01	0.64	0.32	2.05	
22 (11)	0.59	0.27	0.77	0.58	1.21	1.10	1.99	1.79	0.96	1.55	-1
23 (11)	1.47	1.16	1.04	0.48	1.80	1.86	2.39	2.10	1.49	1.59	
24 (12)	0.12	0.13	-0.08	-0.68	0.50	1.10	2.13	1.14	1.08	0.67	
25 (10)	0.14	-0.20	0.35	-0.07	0.58	1.32	1.50	0.78	0.35	0.62	
26 (12)	0.34	1.45	0.95	1.03	2.29	2.33	3.71	2.74	0.24	1.18	
27 (4)	-0.47	-0.48	-0.37	0.21	-0.31	-2.10	-0.61	1.50	0.76		
28 (89)	1.53	1.53	2.65	3.79	3.00	1.85	2.71	2.29	1.38	2.00	
29 (89)	0.60	0.49	0.69	0.84	0.68	0.17					
30 (89)	0.99	0.82	1.25	0.43	0.64	0.18	0.29	1.04	0.48	0.62	
31 (89)	0.97	0.95	1.66	1.17	0.95	1.15	1.43		1.21	0.82	
32 (9b)		1.20	2.84	0.29	0.98	1.76	2.23	2.23	2.06	1.64	-3

Area 5b – Irminger Sea

Warming / salinity increase in middle of 2000's

Abrupt cooling in 2008 & 2009 -

Return of deep convection to NA (Våge et al. 2009, Nature Geoscience)

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009			2000	2001	2002	2003	2004	2005	2006	2007	2008	2009		
1 (12)	-0.94	0.69	-1.40	0.42	0.51	1.78	1.69	2.01	-1.54			³ 1 (12)	0.06	0.60	-1.52	0.32	1.22	0.04	0.04	3.50	-0.75			3
2(1)	0.80	1.02	-1.54	1.85	1.15	1.62	1.10	0.90	-1.06	1.20		2(1)	1.02	0.93	-0.80	2.27	1.26	0.99	0.56	0.76	-0.55	0.91		1
3 (2b)	0.25	-0.24	0.27	0.17	0.92	0.71	0.24	0.46	1.04	1.17		3 (2b)	-0.23	0.09	0.06	1.86	0.49	0.96	0.88	0.50	1.19	-0.16		í
4(2)	0.38	-0.8	.08	0.50	0.88	0.92	0.85	0.92	1.35	0.31		4 (2)	0.94	1.0	0.56	0.97	2.41	1.62	2.68	0.01	0.62	0.29		1
5 (2c)							2					5 (2c)	1.59	1.20	0.54	-0.13	-0.56	-0.83						
6 (2c)	-0.3	8	.25	-0.59	-1.96	-2.30	-1.08	-0.48	-0.13	-0.13	-10	- 2 6 (2c)	1.79	24	2.72	1.21	0.86	0.45	1.17	1.48	0.89	0.11		2
7 (2)	0.44	0.25	-0.22	0.74	0.17	0.34	0.44	-1.12	-0.67	-0.81		7 (2)	0.22	0	0.09	0.07	0.35	0.10	0.33	-1.55	-0.73	-1.06		1
8 (2)	-0.97	0.12	-0.70	-1.15	-1.16	-1.73	-0.29	0.06	-0.50	-0.69		8 (2)	3.55	-0.31	0.14	-177	-1.01	-0.02	0.88	-0.62	-0.31	0.38		1
9 (3)	0.56	0.61	-0.48	1.14	0.81	0.02	-0.09	-0.09	-0.04	0.82		9 (3)	1.02	0.07	-1.19	2.11	0.94	0.44	0.05	0.61	-0.02	-0.02		1
10 (3)	0.59	0.34	-0.12	0.29	0.35	0.18	0.70	0.69	0.75	0.55		10 (3)	-0.44	-0.49	-1.04	1.54	0.39	-0.16	0.14	-0.44	0.38	0.27		L
11 (3)	0.99	0.83	0.97	2.54	2.37	3.40	2.37	2.46	2.08	3.17	1.00	1 11 (3)	0.52	0.73	0.47	2.22	2.15	3.34	1.95	1.89	1.19	2.07	100	1
12 (4b)												12 (40	1.38	0.50	1.38		2.69	2.48	2.26	3,13				
10107	1.17	0.74		2.01	LOL	4.15	2.10	2.04	2.11	2.02		14 (5)	0.00	4.04	1.04		0.70	ALCO.	4.00	0.04	0.00	0.07		
14 (5b)	0.10	0.70	1.37	0.54	2.45	1.84	1.53	1.72	0.76	0.89		14 (50	0.26	0.96	0.90	0.75	2.12	1.50	1.22	2.01	0.55	-0.07		1
46.(6.)	0.00	0.00	0.00	0.00	4.70	0.45	1.40	4.50	4.00	0.00			11/19					10.00				2453		
10 (0)	0.00	0.00	0.83	2.02	1.73	2.10	1.46	1.00	1.92	2.32		-0 17(7)	0.43	0.40	3.47	4.33	2.80	2.80	3.60	4.40	3.40	2.00		0
18(7)	0.03	1.03	1.27	2.20	2.09	2.06	1.89	1.14	1.41	2.80		18(7)	1.20	1.64	2.84	3.24	2.84	2.36	2.64	2.92	3.00	3.52		l .
19 (10)	0.77	0.55	0.89	1.73	171	1.24	1.05	1.07	0.22	1.89		19 (10	2.88	0.80	1.94	2.27	2.20	0.85	2.14	1.90	0.49	2.57	_	í
20 (10)	0.41	0.06	0.03	0.96	0.99	0.77	0.75	0.95	0.60	1.00		20 (10	0.88	0.67	2.08	1.70	0.78	0.55	1.49	2.11	0.39	1.93		í -
21 (10)	0.18	0.00	0.18	1.17	1.20	1.60	1.57	0.63	0.20	1.60		21 (10	0.54	1.02	0.46	1.49	1.35	1.46	2.01	0.64	0.32	2.05		1
22 (11)	0.16	0.06	0.33	0.71	1.52	1.49	1.96	1.61	1.34	0.72	1000	-1 22 (11	0.59	0.27	0.77	0.58	1.21	1.10	1.99	1.79	0.96	1.55	1000	-1
23 (11)	0.12	-0.72	-0.22	0.95	1.95	0.95	0.95	1.45	0.28	0.62		23 (11	1.47	1.16	1.04	0.48	1.80	1.86	2.39	2.10	1.49	1.59		í
24 (12)	-0.33	0.12	0.16	-0.19	0.49	1.40	1.88	1.54	0.67	0.93		24 (12	0.12	0.13	-0.08	-0.68	0.50	1.10	2.13	1.14	1.08	0.67		í
25 (10)	0.06	-0.22	0.40	0.14	0.74	1.48	1.70	1.30	0.90	0.80		25 (10	0.14	-0.20	0.35	-0.07	0.58	1.32	1.50	0.78	0.35	0.62		1
26 (12)	0.38	1.89	1.51	1.51	1.89	3.40	4.15	2.23	1.17	2.30		26 (12)	0.34	1.45	0.95	1.03	2.29	2.33	3.71	2.74	0.24	1.18		1
27 (4)	-0.53	-1.94	-0.49	-1.02	-0.77	-0.23	0.76	0.77	0.94	0.02	-	2 27 (4)	-0.47	-0.48	-0.37	0.21	-0.31	-2.10	-0.61	1.50	0.76	-1.57	-	-2
28 (89)	-1.56	-1.93	-0.40	1.14	1.50	0.79	-0.43	-0.74	0.33	-0.07		28 (89	1.53	1.53	2.65	3.79	3.00	1.85	2.71	2.29	1.38	2.00		1
29 (89)								3				29 (89	0.60	0.49	0.69	0.84	0.68	0.17				2/12/2/		1
30 (89)	0.08	-1.65	-0.50	-0.39	0.52	0.18	0.72	-0.03	0.73	0.58		30 (89	0.99	0.82	1.25	0.43	0.64	0.18	0.29	1.04	0.48	0.62		1
31 (89)	0.04	-0.95	-0.27	0.60	0.44	0.27	1.01	-	0.94	1.20		31 (89	0.97	0.95	1.66	1.17	0.95	1.15	1.43	2.00	1.21	0.82		i
32 (9b)	-1.12	-1.98	-1.48	-1.79	-1.40	-0.98	-1.70	-0.94	-1.07	-0.81		-3 32 (9b)		1.20	2.84	0.29	0.98	1:16	2.23	2.23	2.06	1.64		-3

Primary reason for warming of deep waters

• Lack in deep reaching overturn/deep convection:

Primary reason for warming of deep waters

• Lack in deep reaching overturn/deep convection:

The Irminger gyre

(based on K. Våge et al. 2011, DSR1)

The Irminger gyre

The CIS mooring

 <u>Location</u>: Compromise between Irminger Gyre centre & maximum heat loss (Greenland Tip Jet)

Time series (upper 1500m) from 2002 to 2010

Time series (upper 1500m) from 2002 to 2010

Subpolar Mode water variability (2002-2010) at mooring site

200-400m depth range; 7-day running mean:

Subpolar Mode water variability (2002-2010) at mooring site

200-400m depth range; 7-day running mean:

Seasonality to ~500m

Is salinity important in the density (buoyancy) variability ?

 Separating temperature and salinity effects on density change:

$$\rho = \rho_0 [1 - \alpha (T - T_0) + \beta (S - S_0)]$$

- → $\rho / \rho_{_{0}}$: Density / reference density
- → α : thermal expansion
- β : haline contraction

- Upper 50m (summer mixed layer) thermal/air-sea heat flux driven
- Below 50m:

Haline buoyancy flux contributes about 1000 20% to total buoyancy change.

"Extreme" seasonal cycle

 Select the maximum/minimum T/S values for the whole time series 2002 to 2010 (monthly averages)

35

- Haline buoyancy flux accounts for approx. 40% of tota below 100m
- Dominated by general warming & salinity increase of water column – "the trend!"

What drives the subsurface salinity variability?

Average (2002-2010) seasonal cycle

The CIS mooring

Currents at CIS site

 1-day running mean: dominated by eddies!

132m

2004	2006	2008	2010
		1	

- Does such a branch exists?
- Are there strong recirculation cells at the rim of the current?

"Currents" at CIS site

• Eddy fluxes play a dominant role in transporting information from east

Glider in summer 2006 (X. Fan, SIO)

Conclusion

- •Below shallowest mixed layer (~50m) salinity variability is largest at about 200m depth
- •In the upper 50m, air/sea heat flux dominates the changes in density
- •Average seasonal cycle indicates that haline driven water mass transformation accounts for 20% on density changes (below 50m)
- Including the long-trem trend (2002 to 2010) the haline contribution accounts for > 40% on density changes (below 100m)
- Interannual variability in subsurface salinity can not be related directly to observed mean current variability – need to check correlation with eddy variability.
- •Modelling Irminger Sea overturn requires "accurate" subsurface salinity information

Flow field

 Two month surface drift (mid Feb 2011- mid April 2011)

The 2010 to 2011 data

• Real-time (4h) data telemetry system

See Poster: 108

A subsurface Telemetry system

- In 2011 a new telemetry system based on pop-up buoy's will be tested at the site (collaboration with FP7 THOR)
- Pop-up "messenger" buoys come to surface autonomously and send data to shore via Iridium satellite communication
- Serial & Inductive connection of instruments

Buoy drifting at surface ...

Thank you!

Central Irminger Sea: SPMW T / S Timseries (1991-2009)

